TiO2 Nanoparticles: A Potent ‎Heterogenous Nanocatalyst Mediated ‎One-Pot Tandem Approach for the ‎Environmentally Friendly Synthesis of 3,4-‎Dihydropyrimidin-2-(1H)-One/Thione ‎Derivatives Under Solvent-Free Conditions

author

  • F. Mohamadpour Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz, Iran.‎
Abstract:

   This procedure has developed the use of TiO2 nanoparticles as an environmentally friendly and highly efficient heterogenous nanocatalyst for the eco-safe, facile and one-pot three-component Biginelli synthesis of biologically active corresponding 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives under solvent-free conditions. This eco-friendly protocol provides high to excellent yields, short reaction times, clean reaction, simplicity and easy work up and mild conditions compared to the traditional method of synthesis. Furthermore, environment-friendly, readily available, low-cost and non-toxic nanocatalyst made this protocol economic and sustainable.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

SiO2-BaCl2 as a Highly Efficient and Reusable Heterogeneous Catalyst for the One-pot Synthesis of 3,4-dihydropyrimidin-2-(1H)- one/thione Derivatives Under Solvent-free Conditions

An efficient protocol for the synthesis of 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives via multi-component coupling reaction of aromatic aldehydes, β-ketoester and urea or thiourea under solvent-free conditions using Silica Supported Barium Chloride as a catalyst is described. All prepared compounds with melting points, IR,1H NMR and 13C NMR were identified. High yields, mild conditi...

full text

(CTA)3[SiW12]-Li+-MMT: Efficient nanocatalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions

A highly practical and efficient preparation of 3,4-Dihydropyrimidin-2(1H)-one derivatives was developed via an efficient and simple nanocatalyst and promoted multi-component reaction of ethyl acetoacetate, aromatic aldehyde, and urea in the presence of a catalytic amount of (CTA)3[SiW12]-Li+-MMT under solvent-free conditions. In comparison to the conve...

full text

(CTA)3[SiW12]-Li+-MMT: Efficient nanocatalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions

A highly practical and efficient preparation of 3,4-Dihydropyrimidin-2(1H)-one derivatives was developed via an efficient and simple nanocatalyst and promoted multi-component reaction of ethyl acetoacetate, aromatic aldehyde, and urea in the presence of a catalytic amount of (CTA)3[SiW12]-Li+-MMT under solvent-free conditions. In comparison to the conve...

full text

Oxalic acid dihydrate catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives under thermal and solvent-free conditions

Oxalic acid dihydrate as a green, mild and efficient catalyst for the one-pot three-component Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives from the reaction between β-keto esters (methyl or ethyl acetoacetate), aromatic aldehyde (benzaldehye derivatives) and urea or thiourea under thermal and solvent-free conditions with excellent yields and short reaction time is st...

full text

Oxalic acid dihydrate catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives under thermal and solvent-free conditions

Oxalic acid dihydrate as a green, mild and efficient catalyst for the one-pot three-component Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives from the reaction between β-keto esters (methyl or ethyl acetoacetate), aromatic aldehyde (benzaldehye derivatives) and urea or thiourea under thermal and solvent-free conditions with excellent yields and short reaction time is st...

full text

An Efficient Synthesis of 3,4-Dihydropyrimidin-2-(1H)-one Derivatives Promoted by Antimony Trichloride under Thermal and Solvent-free Conditions

An efficient and simple one-pot approach for the synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives using antimony trichloride (SbCl3) as a mild catalyst by means of three-component Biginelli reaction between β-keto esters, aldehyde derivatives and urea/thiourea under thermal and solvent-free conditions with excellent yields and short reaction times is reported. This m...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 2

pages  137- 144

publication date 2019-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023